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Abstract. Substitutional impurity ions in crystals are known to displace off-center and to perform hindered
rotations around the ideal lattice positions. The vibronic theory to describe both the off-center displace-
ments and the hindered rotations by a single angular equation incorporates terms up to 3rd order in the
off-center displacement coordinates. When the rotation is confined to a single plane, the corresponding
vibronic equation is equivalent to Mathieu’s equation. Extending our earlier work, we derive here the
dipole-dipole coupling to take into account cooperative phenomena. We also derive the optical absorption
band arising from dipolar transitions across “Mexican Hat” surfaces, and we show that hindered rotations
gives rise to magnetic moments quantized in rotational bands.

PACS. 61.72.-y Defects and impurities in crystals; microstructure – 71.38.-k Polarons and electron-phonon
interactions – 76.30.Mi Color centers and other defects

1 Revisiting a topic of the late seventies

Li+ substituted for the host cations in KCl is known to
displace off-center and to rotate around the center of the
former K+ [1]. This is also the case for a substitutional
Li+ with a F center as nearest neighbor. The origin of
the local symmetry breaking points to a strong mixing of
nearly degenerate electronic states of the Li-lattice cluster
by an odd-parity vibrational mode, that is to a Pseudo-
Jahn-Teller (PJT) effect [2,3]. The roundabout rotation
restores on the average the original site symmetry. The
off-center species are hindered rigid rotors with energy
spectra quantized in rotational bands [4]. When isolated,
the Li+ ions occupy 8 off-center sites along the 〈111〉 body
diagonals [5], or 4 sites along the 〈110〉 face diagonals in
equatorial (001) plane if an F center sits in the apex [001]
site to form the FA center [6–8]. The central F − Li axis
can be aligned optically along the [001] crystallographic
axis whereby the Li hindered rotations will all be in the
normal (001) planes. The adiabatic potential energy sur-
face (APES) to control both the off-center displacements
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and the in-plane rotations is a Mexican Hat with promi-
nent off-center → on-center top barrier and rotational bar-
riers along the brim.

This paper extends our published work in the
field [4,9,10]. We now focus on the electrostatic response,
the dispersive oscillator coupling, and the optical spectra
attributed to Li+ off-center ions. Magnetic moments asso-
ciated with the brim currents are also considered in hope
of stimulating an experiment.

2 Off-centering Hamiltonian

2.1 3D rotor in fcc crystal

Li+ ions in KCl are driven off-center by the vibronic mix-
ing of nearly-degenerate opposite-parity electronic states
at the impurity by ungerade vibrations which render un-
stable the lattice site configuration. For a Li+ impurity
ion, we choose |s〉 = |a1g〉, |pi〉 = |t1ui〉 (i = x, y, z) (triply
degenerate) electronic basis states to be mixed by a T1u

vibrational mode, as explained elsewhere [2]. Solving for
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the secular equation, two of its roots represent a doubly-
branched APES [4]:
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1
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where Ki = Miω
2
i , while Esp = |Es − Ep| is the s → p

gap energy. APES controls the off-center instability by
creating rotational sites (cf. Devonshire potential) [5].

Introducing EJT = b2/2K, the Jahn-Teller energy,
the extremal properties of EAD±(Ql) depend on whether
4EJT /Esp < 1 (weak coupling) or 4EJT /Esp > 1
(strong coupling). In the former case, the upper and lower
branches are both anharmonic rotational paraboloids
which bottom at Q = 0 and extend upwards. In the
latter, the lower branch collapses to a radial-valley sur-
face which tops at Q = 0 and bends upwards at Q0,
the off-center radius. The rotational sites are disposed
along the spherical valley of radius Q0. We introduce the
radial vibrational coordinate Q and minimize EAD−(Q)
in Q at dijk = 0, to obtain the valley radius [4]:
Q0 =

√
(2EJT /K)[1 − (Esp/4EJT )2] for 4EJT ≥ Esp. We

model the d-tensor: dijj = db, diii = dc, dijk = 0 otherwise
and set db > dc, bi = b, Ki = K [2]. Neglecting terms 6th
order in Qi in EAD±(Ql) and since the d-dependent cor-
rections are small, APES near Q = Q0 generates a Hamil-
tonian for hindered rotation upon the Q0-radius sphere:

Hvib(Q0)(3D) = −(�2/2I)∆θϕ ± (Mω2/b)Q4
0{(dc − db)

× [(cosϕ sin θ)4 + (sin ϕ sin θ)4 + (cos θ)4] + db}
+ EJT [(1 ± 2) − (Esp/4EJT )2]

where Q0, θ, ϕ are spherical coordinates and I = MQ2
0 is

the off-center inertial moment.

2.2 2D rotor in fcc crystal

We next freeze in the apical vibrational coordinate QZ =
0 (θ = π/2). Now the rotation is confined to the equa-
torial plane converting the site symmetry from cubic Oh

(T1u symmetry-breaking mode), pertinent to an isolated
impurity, to axial C4v (Eu symmetry breaking mode), per-
tinent to an impurity confined to a plane. The Oh → C4v

symmetry lowering results from the immobilization of a
vibrating halogen pair along the QZ axis, as an F cen-
ter sits in the neighboring 〈001〉 site [10]. The basic states
change alongside: |s〉 → |α〉, |p〉 → |β〉. The 2D rotation
Hamiltonian is

Hvib(Q0)(2D) =
((

�
2/2I
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The extrema of EAD− are at ϕ = n(π/4), the minima and
maxima on EAD+ are similar but dephased. EAD−(ϕ) is
a Mexican Hat [4]. The reorientational barrier EBII , dif-
ference between a maximum and a minimum on EAD−
(or EAD+), is EBII = Iω2

renII/8, while the energy gap,
i.e. splitting between a minimum on EAD+ and a maxi-
mum on EAD−, is E12 = 4{EBII [dc/(db − dc)] + EJT }.
ωrenII = ωQ0

√
(db − dc)/4b is the renormalized vibra-

tional frequency [4].

3 The Mathieu equation

We rewrite the 2D Schrödinger equation in the form:

((�2/2I)(d2Y (ϕ)/dϕ2) − 2B± cos(4ϕ)Y (ϕ)

+ (C± − E)Y (ϕ) = 0

where B± = ±(1/2)EBII , C± = ±(1/2)EBII [(3dc +
db)/(db − dc)] + EJT [(1 ± 2) − (Eαβ/4EJT )2].
This is Mathieu’s equation, its solutions are
Mathieu’s functions [12,13]. We introduce z = 2ϕ,
a = (2I/�

2)(E − C±), and Mathieu’s parameter

q = 2(B±I/�
2) = ±(2EB/�ωrenII)2.

3.1 Mathieu’s eigenstates and eigenvalues

According to Floquet’s theorem, the general solution to
Mathieu’s equation is

Y (z, q) = A1B1(z) exp(µz) + A2B2(z) exp(−µz),

where µ = im is imaginary for a spatially undamped so-
lution, while it is real or complex for a spatially damped
solution [13]. Spatially undamped solutions exist in spe-
cific regions only defined by µ = µ(α, q) and referred to as
allowed energy bands. There are four types of periodic so-
lutions, even z-parity cem(z, q) and odd z-parity sem(z, q)
in 2 classes, even integer at m = 2n and odd-integer at
m = 2n+1, with respective eigenvalues am(q) to cem(z, q)
and bm(q) to sem(z, q). The functions are normalized so as
(1/π)

∫ 2π

0
[Ym(x)]2dx = 1. At small q � 1, ce0(z, q) ≈ 1,

cem(z, q) ≈ cos(mz), sem(z, q) ≈ sin(mz) and am ≈ m2,
bm ≈ m2. Integer class periodic functions define the edges
of allowed energy bands, as shown below. In the interior,
the undamped functions cem(z, q) and sem(z, q) are to
be extended to noninteger m. Noninteger extensions be-
low are based on a proportional segmenting of an allowed
energy range by a LC of the respective edge functions.
One defines undamped functions cem(z, q) and sem(z, q)
as well as their eigenvalues am(q) and bm(q) at 0 ≤ m ≤ 1.
The allowed eigenenergies at m integer or fractional are
E{am,bm}(q) = (�2/2I){am(q), bm(q)} + C{±}.
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3.2 Rotational bands

Mathieu’s eigenvalue equation defines allowed energy
bands at q < 0 (upper-sign branch) and at q > 0 (lower
sign branch), respectively [12,13]. As q is increased, the
allowed bands get narrower turning to single levels at
high barriers. The allowed band borders in the energy
versus q plane are described by Mathieu’s eigenvalues
an(q) and bn(q), or, alternatively, by the corresponding
periodic eigenfunctions cen(z, q) or sen(z, q) at integral
n (n = 1, 2, 3, 4, ...), while each energy in the interior is
generated by pairs of Mathieu’s functions cem(z, q) and
sem(z, q) at intermediate nonintegral m. Within an al-
lowed band, Mathieu’s eigenstates and eigenvalues are
functions of the wavenumber k = mπ where 0 ≤ m ≤ 1
for the 1st Brillouin zone [13]. At q < 0, the allowed bands
are delineated as follows: (a0, a1), (b1, b2), (a2, a3), etc.,
while at q > 0 the border pairs are: (a0, b1), (a1, b2), etc.

4 Electrostatics

4.1 Electrostatics of off-center dipoles

The adiabatic eigenstates of the two APES branches
(EAD±) are:

|r,Q〉U,L = ± 1√
2
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mixing electric dipole generates optical transitions be-
tween EAD±:
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]
·

Dipole averages in the adiabatic states control the sys-
tem’s electrostatic response [14]

pLL(Q) ≡ 〈r,Q|er|r,Q〉LL

=

∑
i=x,y,z GiQi[〈s|er|pi〉 + 〈pi|er|s〉]√∑
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i Q

2
i + E2

sp

,

pUU (Q) ≡ 〈r,Q|er|r,Q〉UU = −pLL(Q).

4.2 Dispersive coupling of off-center ions

If averaged over the reorientational sites, the inversion
dipole pLL should vanish since the rotation tends to re-
store the cubic site symmetry. Yet, nearby fluctuating
dipoles couple as pLL1(Q0)pLL2(Q0)/κR3 along their in-
terconnecting line. As a result, the rotational bandwidths,
e.g. ∆E(q) = (�2/2I)/(a1(q) − a0(q)), broaden by the
small coupling magnitude. The broadened bandwidth is
derived by 1st order perturbation theory, as in harmonic-
oscillator analyses [14]:

∆E12(q) =
√

[∆E(q)]2 + (pLL1(Q0)pLL2(Q0))/κR3]2

∼ ∆E(q) +
1
2
∆E(q)

(
α1α2/κ2R6

) ·
R is the intercenter separation, α = pLL(Q0)2/∆E(q)
is the vibronic polarizability. The quantity �Ωrot(q) =
(1/2)∆E(q) in 1D is the intersite rotational hop-
ping energy. UB = (1/2)∆E(q)(α1α2/κ2R6) is the vi-
bronic Van-der-Waals binding energy of off-center dipoles.
The middle-of-the-band energy, polaron binding energy
Epolbind = (�2/4I) × (a0 + a1) + C−, is not affected by
the perturbation, as it is not in harmonic analyses [14].

4.3 Optical spectra

Optical absorption associated with transitions at off-
center rotors is ∝ |pUL(Ql)|2 mixing initial and final
Mathieu states. We get for a rigid 2D off-center rotor along
the brim at Q = Q0:

pUL(Q0) = (Esp/4EJT )
√

1 − (Esp/4EJT )2

×
∑

i=x,y,z

(Qi0/Q0)〈s|er|pi〉 ·

Matrix elements of pUL(Ql) are calculated between initial
and final states

ce0+m(z, q) =
(1 − m)ce0(z, q) + mce1(z, q)√

m2 + (1 − m)2

(cen−1, sen)+m(z, q) =
(1 − m)cen−1(z, q) + msen(z, q)√

m2 + (1 − m)2

with corresponding eigenvalues

a0+m(q) =
(1 − m)2a0(q) + m2a1(q)

m2 + (1 − m)2

(an−1, bn)+m(q) =
(1 − m)2an−1(q) + m2bn(q)

m2 + (1 − m)2
·
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At low temperature, the absorption coefficient reads:

κ(Ω) = [(2π)2N/3c]
∑
nm

ΩρLm(T )

× |〈ce0+m(z, q)|pUL(Ql)|(cen−1, sen)+m(z, q)〉|2
× δ(εUn+m − εL0+m − �Ω),

εUn+m = (�2/2I)(an−1, bn)+m(q),

εL0+m = (�2/2I)a0+m(q)

where N is the number of absorbing centers, L(U) is the
lower (upper) APES branch, n,m number bands and in-
traband energy levels, respectively, ρLm(T ) is the initial
state thermal occupation factor, pUL is the optical tran-
sition dipole. Calculated optical spectra of off-center ions
will be reported at length elsewhere.

5 Magnetostatics

5.1 Magnetic moments of quasifree in-plane rotators

We assume a statistical distribution in {110} plane of or-
biting ions with magnetic moments −µJ , 0, +µJ arising
from circular currents −J , 0, +J , respectively. For a more
transparent physics, we use Ampere’s theorem to derive a
relation between J and µJ [15]:

µJ = (4πµ/c)(πa2)J = (4πeµ/c)(πa2)Ωrot

a is the ring radius, µ the magnetic permeability, Ωrot the
rotational frequency.

The current-ring magnetic moment µJ will couple to
an axial field H = B/µ. There are 3 obvious eigenener-
gies: −µJH , 0, +µJH for a magnetic triplet. A microwave
power of frequency νmw will incite 2 resonant transitions,
singlet and doublet, between the magnetic energy levels:

hνJmw1 = 2gJµJH

hνJmw2,3 = gJµJH.

The gyromagnetic correction to µJ is [15]:

∆µB = (e/2c)a2ΩB

ΩB = eB/mc is the gyration frequency. From Ampere’s
theorem, ∆µB = (4πµ/c) × (πa2)JB , so that ∆µB is the
moment arising from a field-induced loop current JB =
(e2/8π2mc)H .

5.2 Magnetic moments of hindered in-plane rotators

For a hindered rotator, Ωrot = Ωrot(a,b)n(q) being quan-
tized in rotational bands E(a,b)n(q), so is the magnetic
moment µJ = µJ(a,b)n. (The barrierless q = 0 case is in-
cluded in the category even though the disappearance of
the barriers converts the bands into separate energy levels

quantized as m2.) Now, the gyration frequency ΩB can as-
sume only values equal to the rotational frequencies Ωrot

in the allowed bands:

ΩB = Ωrot(a,b)m.

This requirement quantizes the magnetic field B. The ro-
tational frequencies are proportional to the allowed band-
widths Ωrot(a,b)n = (1/4�)W(a,b)n where:

W(a,a)n = (2�
2/I)(an+1 − an)(q < 0, n even)

W(b,b)n = (2�
2/I)(bn+1 − bn)(q < 0, n odd)

W(b,a)n = (2�
2/I)(bn+1 − an)(q > 0, alln)

am(q) = m2 + cam(q), bm(q) = m2 + cbm(q), while
c(a,b)m(q) are the tunneling corrections.

Combining, the quantized magnetic field is:

B = B(a,b)m =
( c

e

)
· I(a,b)mΩrot(a,b)m

Q2
0

while the quantized magnetic flux across the off-center
ring of radius Q0 is:

Φ = Φ(a,b)m ≡ π
( c

e

)
I(a,b)mΩrot(a,b)m,

where I(a,b)m is the inertial moment of a particle rotating
in a band. Other quantities are:
the gyromagnetic moment quantized as

∆µB = ∆µB(a,b)m ≡ e

2c
Ωrot(a,b)mQ2

0

and the field-induced loop current quantized as

JB = J(a,b)m =
e

8π2µ
Ωrot(a,b)m.

Finally, we compare ∆µB and µJ to get µJ/∆µB =
8π2µ > 1. The gyration correction being always positive
along B, ∆µB splits the doublet transition at ∆µB �= 0.
Now, 3 eigenenergy levels of the full moment in an
external field H give rise to 3 resonances:

hνBmw1 = 2µJH = 8π2I(a,b)m(Ωrot(a,b)m)2

hνBmw2 = g0+µJH = 4π2g0+I(a,b)m(Ωrot(a,b)m)2

hνBmw3 = g0−µJH = 4π2g0−I(a,b)m(Ωrot(a,b)m)2

where g0± = 1±1/(8π2µ). Using the pertinent Li+ param-
eters [2,4,10], the numerical estimates show that µJ(a,b)n

are accessible to present-day SQUID and possibly reso-
nance measurements.
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